1. Title of the Invention

Fabrication method of liquid crystal display

2. Scope of the Claims

(1) A fabrication method of a liquid crystal display comprising a liquid crystal layer between a pair of electrode substrates is characterized in that an ultraviolet curing seal pattern of a predetermined height for encompassing the liquid crystal 3 is formed on a major portion of edges of a substrate (1), in a decompression state the liquid crystal 3 of an amount corresponding to a cell thickness is dropped into the seal pattern 2 on the substrate, the substrate (1) is adhered to another substrate (4), and ultraviolet rays from the atmosphere are irradiated onto the seal pattern to seal the liquid crystal layer.

3. Detailed Explanation of the Invention

Industrially Applicable Field

The present invention relates to a fabrication method of a liquid crystal display. In particular, to prevent deteriorations in display quality caused by changes in properties of a liquid crystal and to increase productivity, a seal pattern encompassing the liquid crystal is made of an ultraviolet curing resin material, and substrates are adhered by filling the liquid crystal into the seal pattern under reduced pressure, whereby the liquid crystal layer is sealed by ultraviolet rays irradiated from the atmosphere.

A liquid crystal display has a wide range of applications including computer terminals, all kinds of instruments, TV displays etc., in that it is a thin, light and low power consuming.

Especially, in case of a gradation display as in TV display, it is necessary that a liquid crystal is evenly and uniformly spread over the entire surface. Therefore, the uniformization of a cell thickness became a major point of recent technologies, and a number of methods have been suggested therefor.

However, when the productivity is considered, the efforts are not yet sufficient. In addition, even in the liquid crystal injection process, there are several problems to be solved, such as, the injection takes long, a large amount of the liquid crystal is consumed, and the liquid crystal is not firmly sealed. Therefore, there is a need to develop a method for more easily fabricating high-quality liquid crystal displays.

Structure of the Conventional Embodiment and Problems thereof

A conventional fabrication method of a liquid crystal display will now be described in reference to Fig. 3 showing a perspective view of main parts of the display

and to Fig. 4 showing a flow chart of the method. In the process shown in Fig. 3(a), an adhesive is patterned by printing for example on one substrate 10 as shown in the drawing, to form a seal pattern 9. Reference numeral 1 in Fig. 4 denotes this process, but the sequential processes in Fig. 4 will be numbered in parentheses from now on. The seal pattern 9, as shown in Fig. 3(a), has a shape of an open A part for injecting a liquid crystal. In process (2), a spacer 8 is spread in the seal pattern 9 on the substrate 10.

Next, in process (3) another substrate 4 is placed thereon for adhesion, and in process (4) the substrate 4 is compressed and the space, i.e., the gap, between both substrates 10, 4 is controlled to harden a sealing agent forming the seal pattern 8 at a hundred and several tens of temperature.

Referring next to Fig. 3(b), once the adhesion of the substrates is complete, the space where the liquid crystal 3 is injected is made vacuous in process (5). Here, the liquid crystal 3 is injected from an inlet (A part).

Referring now to Fig. 3(c), in process (6) the inlet is covered with a sealing agent, and in process (7) the liquid crystal around the inlet is removed and cleansed to complete the fabrication of the liquid crystal display.

The problems of the conventional fabrication method of the liquid crystal display are that there are too many processes after the liquid crystal injection and the fabrication requires a great amount of time. Also, since the seal pattern material and the sealing agent are different materials, sealing defects occur. And, because the liquid crystal is poured through the inlet, alignment defects of the liquid crystal could be resulted depending on the flow rate of the liquid crystal. In addition, there is a difference in electric resistance between the inject area and other areas due to the

chromato effect adsorbing on the substrate, and it is impossible to control the amount of the liquid crystal being injected.

Object of the Invention

Accordingly, an object of the present invention is to provide a fabrication method of a liquid crystal display, through which a high quality liquid crystal display can be more easily produced without damaging liquid crystal properties of a liquid crystal panel.

Means for Solving the Problem(s)

According to the present invention, a closed ultraviolet curing seal pattern is formed on one substrate, and under reduced pressure the liquid crystal of an amount corresponding to a cell thickness is dropped into the seal pattern for adhering the substrate to another substrate. Then, ultraviolet rays from the atmosphere are irradiated to the seal pattern for sealing the liquid crystal layer.

Applications of the Invention

By using the closed seal pattern, it becomes possible to prevent alignment defects caused by the (different) flow rate of the liquid crystal during the injection, and changes of the electric resistance due to the chromato effect. Also, the irradiation of ultraviolet rays makes it possible to finish the sealing easily within a short amount of time.

Embodiment

Fig. 1 is a flow chart explaining a fabrication method of a liquid crystal display according to the present invention, and Fig. 2 is a perspective view showing the structure of the liquid crystal display of the present invention. A fabrication method of the invention will now be described in reference to both drawings.

As illustrated in Fig. 2, a seal pattern 2 of a predetermined height for encompassing a liquid crystal 3 is printed on one substrate 1 (having an electrode formed on the upper surface). Reference numeral (1) in Fig. 1 indicates this process. Similarly, sequential processes in Fig. 4 will be numbered in parentheses.

As in the conventional art, in process (2) a spacer 8 is spread in a space surrounded by the seal pattern 2. And, in process (3), in a decompressed atmosphere, the liquid crystal 3 is dropped evenly into the space where the spacer is spread over. Here, the alignment of the liquid crystal is not to be damaged for uniform dropping.

Since the surface of the dropped liquid crystal is open and the decompressed state is maintained, removing the liquid crystal layer can also be done within a short amount of time. Next, in process (4) the substrate 1 is adhered to another substrate 4.

In process (5), ultraviolet rays are irradiated onto the adhered substrates to harden the seal pattern 2. As a result thereof, the liquid crystal is sealed and the fabrication of a liquid crystal display is completed.

It is needless to say that the gap between the substrates of the liquid crystal display equals to the height of the seal pattern.

Effect of the Invention

As explicitly explained so far, according to the present invention, the problems observed in the conventional art, including the non-uniformity of liquid crystal

S63-109413

properties, the non-uniform gap between the substrates, and the difficulties in

fabrication can be resolved by the simple process of generating the closed ultraviolet

curing seal pattern. Therefore, the method of the present invention can be

advantageously used for the fabrication of liquid crystal displays.

4. Brief Explanation of the Drawings

Fig. 1 is a flow chart explaining a fabrication method of a liquid crystal display

according to the present invention;

Fig. 2 is a perspective view showing the structure of a liquid crystal display

fabricated by the method in Fig. 1; and

Fig. 3 and Fig. 4 respectively illustrate a perspective view of main part of a

display and a flow chart explaining a conventional fabrication method of a liquid crystal

display.

<Explanation of Reference Numerals>

1, 4 : Substrate

2 : Seal pattern

3: Liquid crystal

6

⑩ 公 開 特 許 公 報 (A) 昭

昭63 - 109413

@Int_Cl.4

識別記号

庁内整理番号

每公開 昭和63年(1988)5月14日

G 02 F

1/13 1/133 7610-2H 8205-2H

審査請求 未請求 発明の数 1 (全4頁)

液晶ディスプレイの製造方法

②特 願 昭61-256611

愛出 頭 昭61(1986)10月27日

@発明者 小池

慈 郎

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

⑪出 願 人 富士通株式会社

神奈川県川崎市中原区上小田中1015番地

砂代 理 人 弁理士 井桁 貞一

明 柳 書

1. 発明の名称

液晶ディスプレイの製造方法

2. 特許請求の範囲

一対の電極基板間に液晶層を有してなる液晶ディスプレイの製造方法において、

一方の基版(1) の問縁部に前記液晶(3) を囲う一定高さの紫外線硬化性シールパターン(2)を形成し、滅圧した状態でセル厚さに相当する分量の前記を協同を前記基板上のシールパターン(2)内に滴下してからその上に他方の基板(4)を貼り合わせ、大気圧中にて前記シールパターンに紫外線を照射して硬化させて液晶層を封止することを特徴とする液晶ディスプレイの製造方法。

3. 発明の詳細な説明

(枫要)

この発明は、液晶ディスプレイを形成する際に、 液晶の特性変化による品質の低下を防止し生産性 を高めるために、液晶を狙うシールパターンを紫 外線硬化性材料で形成し、減圧した状態でこのシ ールパターン内に液晶を滴下し基板を貼り合わせ、 大気中にて紫外線を照射して封止する。

〔産業上の利用分野〕

この発明は液晶ディスプレイの製造方法に関するものである。

液晶ディスプレイは、露形軽量でしかも低消費 電力であると云うことから、コンピュータ嫡末、 各種計器、テレビ表示等に広く使用されている。

特に、テレビ表示のように諮問表示を行う場合に、液晶の特性は、全面に渡って均一に良好であることが必要である。従って、セル厚の均一化が大きなポイントとなり、この均一化のために程々の方法が提案されている。

しかしながら生産性等を考えると未だ十分なものと言えない。更に、液晶注入工程においても、 注入時間が長いとか、液晶の使用量が多いとか、 液晶封止等に多くの問題を有しており、容易に高 品質の液晶ディスプレイを作製できる製造方法が 要求されている。

〔従来の技術〕

次ぎに、工程(3)で他方の基板 4 をその上に置き 貼り合わせ、工程(4)で基板 4 を加圧し両基板10, 4 間の間隔、即ちギャップを制御しながらシール パクーン 9 を形成している封止剤を百数十度の温 度にて硬化する。

以上のような従来の状況から、この発明では液 品パネルの液晶特性を損なうことなく商品質の液 品ディスプレイが容易に得られる液晶ディスプレ イの製造方法の提供を目的とするものである。

(問題点を解決するための手段)

この発明は、一方の基板上に閉じた紫外線硬化性シールパターンを形成し、滅圧した状態でセル厚さに相当する分量の前配液晶を前配シールパターン内に滴下して他方の基板を貼り合わせ、その後大気圧中にて前記シールパターンに紫外線を照射し封止をするようにする。

(作用)

閉じたシールパターンを用いるので液晶注入時 に液晶の流れに起因する配向不良及び、クロマト 効果による液晶の電気抵抗の変化が防げ、また紫 外線照射によって短時間で封止が簡単に行える。 次に第3図的の工程においては、贴合せの終了 した基板に対して工程的で液晶3を注入する空間 を真空にして、注入口(A部)から液晶3を注入 する。

次に第3図(のにおいては、工程(6)で注入口を封 止剤で塞さいだ後、工程(7)で注入口付近に付着し た液晶の拭き取り、洗浄を施し、以上によって液 晶ディスプレイが完成される。

〔発明が解決しようとする問題点〕

従来の液晶ディスプレイの製造工程は、液晶注入以降工程が多く製作に時間を要すると云う間類と、シールパターン材料と封止剤とで一般にに対するために封止不良を発生するとともに注入しているために主に入しているために注入しているために主体の液晶の流れに起因する液晶の配向不良、基本に以外の部分とでの液晶の電気抵抗に違いが生じがあった。

(実施例)

第1 図は本発明による液晶ディスプレイの製造 工程を示す流れ図、第2 図は本発明の液晶ディス プレイの構造を示す斜視図であり、両図を参照し ながら本発明の製造法につき説明する。

第2図に示すように、まず一方の基板(上面には電極が形成済みである)1上に、液晶3を囲む一定高さのシールパターン2を印刷して形成する。第1図の(1)はこの工程であり、以後の工程についても前記第4図同様に括弧付き数字で示している。

このシールパターン 2 に囲まれた空間に従来と同じように、工程(2) でスペーサ 8 を散布する。そして工程(3) で滅圧された雰囲気内において、スペーサが散布された前記空間に液晶 3 を均一になるように滴下する。均一滴下のために液晶特性の配向性を損なうことがない。

適下された液晶表面は関放状態であり、しかも 減圧状態であるので、液晶の脱泡も短時間にて行 える。次に工程(4)で他の基板 4 との貼り合わせを 行う。 そして工程(5)で貼り合わせた基板に紫外線を照射して、シールパターン2を硬化させ、その結果液晶を密封し液晶ディスプレイを完成する。

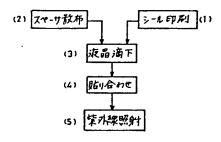
なお液晶ディスプレイの基板間ギャップは、シ ールパターンの高さであることは言うまでもない。

(効果)

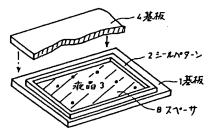
以上の説明から明らかなように、この発明によれば、従来問題であった液晶特性の不均一性、基板間ギャップの不均一、製作の困難性を、閉じた 紫外線硬化性のシールパクーンを作製する簡単な 工程により解消できるので、液晶ディスプレイを 製作する上できわめて有益である。

4. 図面の簡単な説明

第1図は本発明による液晶ディスプレイの製造 工程を示す流れ図、

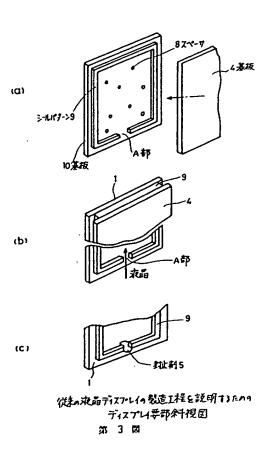

第2図は第1図の製造工程で製作された液晶ディスプレイの構造を示す斜視図、

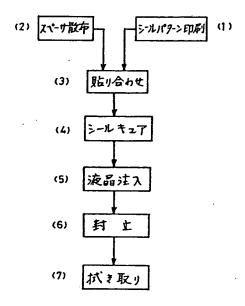
第3図および第4図は従来の液晶ディスプレイ


の製造工程を説明するためのディスプレイ要部 斜視図と流れ図である。

図において、1と4は基板、2はシールパターン、3は液晶を示す。

代理人 弁理士 井 桁 貞 一〇万寸




本発明にお液晶ディスプリロ製造工程に不大人図 数 1 図

才1回A根造工程で発作されて液晶ディスプル/ A構造をネ7斜視回

375 2 🖾

徒未0想造工程流八团

第 4 図